Ir al contenido

Documat


Strong supermartingales and limits of nonnegative martingales

  • Czichowsky, Christoph [2] ; Schachermayer, Walter [1]
    1. [1] University of Vienna

      University of Vienna

      Innere Stadt, Austria

    2. [2] london School of Economics and Political Sciences
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 44, Nº. 1, 2016, págs. 171-205
  • Idioma: inglés
  • DOI: 10.1214/14-AOP970
  • Enlaces
  • Resumen
    • Given a sequence (Mn)∞n=1 of nonnegative martingales starting at Mn0=1, we find a sequence of convex combinations (M~n)∞n=1 and a limiting process X such that (M~nτ)∞n=1 converges in probability to Xτ, for all finite stopping times τ. The limiting process X then is an optional strong supermartingale. A counterexample reveals that the convergence in probability cannot be replaced by almost sure convergence in this statement. We also give similar convergence results for sequences of optional strong supermartingales (Xn)∞n=1, their left limits (Xn−)∞n=1 and their stochastic integrals (∫φdXn)∞n=1 and explain the relation to the notion of the Fatou limit.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno