Ir al contenido

Documat


Exact Rosenthal-type bounds

  • Pinelis, Iosif [1]
    1. [1] Michigan Technological University

      Michigan Technological University

      City of Houghton, Estados Unidos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 43, Nº. 5, 2015, págs. 2511-2544
  • Idioma: inglés
  • DOI: 10.1214/14-AOP942
  • Enlaces
  • Resumen
    • It is shown that, for any given p≥5, A>0 and B>0, the exact upper bound on E|∑Xi|p over all independent zero-mean random variables (r.v.’s) X1,…,Xn such that ∑EX2i=B and ∑E|Xi|p=A equals cpE|Πλ−λ|p, where (λ,c)∈(0,∞)2 is the unique solution to the system of equations cpλ=A and c2λ=B, and Πλ is a Poisson r.v. with mean λ. In fact, a more general result is obtained, as well as other related ones. As a tool used in the proof, a calculus of variations of moments of infinitely divisible distributions with respect to variations of the Lévy characteristics is developed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno