Ir al contenido

Documat


Sub and supercritical stochastic quasi-geostrophic equation

  • Röckner, Michael [3] ; Zhu, Rongchan [1] ; Zhu, Xiangchan [2]
    1. [1] Beijing Institute of Technology

      Beijing Institute of Technology

      China

    2. [2] Beijing Jiaotong University

      Beijing Jiaotong University

      China

    3. [3] University of Bielefeld
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 43, Nº. 3, 2015, págs. 1202-1273
  • Idioma: inglés
  • DOI: 10.1214/13-AOP887
  • Enlaces
  • Resumen
    • In this paper, we study the 2D stochastic quasi-geostrophic equation on T2 for general parameter α∈(0,1) and multiplicative noise. We prove the existence of weak solutions and Markov selections for multiplicative noise for all α∈(0,1). In the subcritical case α>1/2, we prove existence and uniqueness of (probabilistically) strong solutions. Moreover, we prove ergodicity for the solution of the stochastic quasi-geostrophic equations in the subcritical case driven by possibly degenerate noise. The law of large numbers for the solution of the stochastic quasi-geostrophic equations in the subcritical case is also established. In the case of nondegenerate noise and α>2/3 in addition exponential ergodicity is proved.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno