Ir al contenido

Documat


On Picard bundles over Prym varieties

  • L. Brambila-Paz [3] ; E. Gómez-González [1] ; F. Pioli [2]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] University of Genoa

      University of Genoa

      Genoa, Italia

    3. [3] Mathematics Research Center

      Mathematics Research Center

      México

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 52, Fasc. 2, 2001, págs. 157-168
  • Idioma: inglés
  • Títulos paralelos:
    • Fibrados de Picard sobre variedades de Prym
  • Enlaces
  • Resumen
    • Let $\pi: Y\rightarrow X$ be a covering between non-singular irreducible projective curves. The Jacobian $J(Y )$ has two natural subvarieties, namely, the Prym variety $P$ and the variety $\pi^\ast(J(X))$. We prove that the restriction of the Picard bundle to the subvariety $\pi^\ast(J(X))$ is stable. Moreover, if $\widetilde P$ is a principally polarized Prym- Tyurin variety associated with $P$, we prove that the induced Abel-Prym morphism $\widetilde p: Y\rightarrow\widetilde P$ is birational to its image for genus $g_X > 2$ and deg $\pi\not= 2$. We use this result to prove that the Picard bundle over the Prym variety is simple and moreover is stable when $\widetilde p$ is not birational onto its image.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno