This paper studies irrationality of values taken by the functions $Tq$ defined by $T_q(z)= \sum^{+ \infty}_{n=0} z^n/ q^{n(n+1)/2}$, and $E_q$ such that $E_q(z)=\sum^{+ \infty}_{n=0} z^n/\prod^n_{k=1} (q^k-1)$, where $q\in\mathbb{Q}$ and $\vert q\vert>1$.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados