Let GG be a simple connected graph. The geometric-arithmetic index of GG is defined as GA1(G)=∑uv∈E(G)2√d(u)d(v)d(u)+d(v)GA1(G)=∑uv∈E(G)2d(u)d(v)d(u)+d(v), where duu represents the degree of the vertex uu in the graph GG . Recently, Graovac defined the fifth version of geometric-arithmetic index of a graph GG as GA5(G)=∑uv∈E(G)2√SvSuSv+SuGA5(G)=∑uv∈E(G)2SvSuSv+Su, where Suuis the sum of degrees of all neighbors of vertex uu in the graph GG . In this paper, we compute the fifth geometric arithmetic index of Polycyclic Aromatic Hydrocarbons PAHkPAHk.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados