Ir al contenido

Documat


Twisted properties of banach spaces

  • Autores: Jesús María Fernández Castillo Árbol académico, Manuel González Ortiz Árbol académico, Anatolij M. Plichko, David Yost
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 89, Nº 2, 2001, págs. 217-244
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-14339
  • Enlaces
  • Resumen
    • If $\mathcal P$, $\mathcal Q$ are two linear topological properties, say that a Banach space $X$ has the property $\mathcal P$-by-$\mathcal Q$ (or is a $\mathcal P$-by-$\mathcal Q$ space) if $X$ has a subspace $Y$ with property $\mathcal P$ such that the corresponding quotient $X/Y$ has property $\mathcal Q$. The choices $\mathcal P,\mathcal Q \in\{\hbox{separable, reflexive}\}$ lead naturally to some new results and new proofs of old results concerning weakly compactly generated Banach spaces. For example, every extension of a subspace of $L_1(0,1)$ by a WCG space is WCG. They also give a simple new example of a Banach space property which is not a 3-space property but whose dual is a 3-space property.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno