Ir al contenido

Documat


Indices, convexity and concavity of Calderón-Lozanovskii spaces

  • Autores: Anna Kaminska, L. Maligranda, L.-E. Persson
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 92, Nº 1, 2003, págs. 141-160
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-14398
  • Enlaces
  • Resumen
    • In this article we discuss lattice convexity and concavity of Calderón-Lozanovskii space $E_\varphi$, generated by a quasi-Banach space $E$ and an increasing Orlicz function $\varphi$. We give estimations of convexity and concavity indices of $E_\varphi$ in terms of Matuszewska-Orlicz indices of $\varphi$ as well as convexity and concavity indices of $E$. In the case when $E_\varphi$ is a rearrangement invariant space we also provide some estimations of its Boyd indices. As corollaries we obtain some necessary and sufficient conditions for normability of $E_\varphi$, and conditions on its nontrivial type and cotype in the case when $E_\varphi$ is a Banach space. We apply these results to Orlicz-Lorentz spaces receiving estimations, and in some cases the exact values of their convexity, concavity and Boyd indices.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno