Ir al contenido

Documat


Langlands parameters of derived functor modules and Vogan diagrams

  • Autores: Paul D. Friedman
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 92, Nº 1, 2003, págs. 31-67
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-14393
  • Enlaces
  • Resumen
    • Let $G$ be a linear reductive Lie group with finite center, let $K$ be a maximal compact subgroup, and assume that $\mathrm{rank } G = \mathrm {rank } K$. Let $\ g= l\oplus u$ be a $\theta$ stable parabolic subalgebra obtained by building $l$ from a subset of the compact simple roots and form $A_g(\lambda)$. Suppose $\Lambda=\lambda+2\delta( u\cap p)$ is $K$-dominant and the infinitesimal character, $\lambda+\delta$, of $A_{g}(\lambda)$ is nondominant due to a noncompact simple root. By interpreting these conditions on the level of Vogan diagrams, a conjecture by Knapp is (essentially) settled for the groups $G=SU(p,q),\, Sp(p,q)$, and $SO^*(2n)$, thereby determining the Langlands parameters of natural irreducible subquotient of $A_{ g}(\lambda)$. For the remaining classical groups, simple supplementary conditions are given under which the Langlands parameters may be determined.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno