Ir al contenido

Documat


On $\alpha$-Short Modules

  • Autores: M. Davoudian, O. A. S. Karamzadeh, N. Shirali
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 114, Nº 1, 2014, págs. 26-37
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-16638
  • Enlaces
  • Resumen
    • We introduce and study the concept of $\alpha$-short modules (a $0$-short module is just a short module, i.e., for each submodule $N$ of a module $M$, either $N$ or $\frac{M}{N}$ is Noetherian). Using this concept we extend some of the basic results of short modules to $\alpha$-short modules. In particular, we show that if $M$ is an $\alpha$-short module, where $\alpha$ is a countable ordinal, then every submodule of $M$ is countably generated. We observe that if $M$ is an $\alpha$-short module then the Noetherian dimension of $M$ is either $\alpha$ or $\alpha+1$. In particular, if $R$ is a semiprime ring, then $R$ is $\alpha$-short as an $R$-module if and only if its Noetherian dimension is $\alpha$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno