Chunjie Wang, Kehe Zhu
We show that the $L^2$ integral mean on $r\mathsf{D}$ of an analytic function in the unit disk $\mathsf{D}$ with respect to the weighted area measure $(1-|z|^2)^\alpha\,dA(z)$, where $-3\le\alpha\le0$, is a logarithmically convex function of $r$ on $(0,1)$. We also show that the range $[-3,0]$ for $\alpha$ is best possible.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados