Ir al contenido

Documat


Fenchel equalities and bilinear minmax equalities

  • Autores: G. H. Greco, A. Flores, H. Román Flores
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 98, Nº 2, 2006, págs. 217-228
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-14992
  • Enlaces
  • Resumen
    • Chief objects here are pairs $(X,F)$ of convex subsets in a Hilbert space, satisfying the bilinear minmax equality 26737 \inf_{x\in X}\sup_{y\in F} \langle x,y\rangle=\sup_{y\in F}\inf_{x\in X} \langle x,y\rangle. 26737 Specializing $F$ to be an affine closed subspace we recover and restate crucial concepts of convex duality, revolving around Fenchel equalities, biconjugation, and inf-convolution. The resulting perspective reinforces the strong links between minmax, set-theoretic, and functional aspects of convex analysis.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno