Ir al contenido

Documat


Higher minors and van Kampen's obstruction

  • Autores: Eran Nevo Árbol académico
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 101, Nº 2, 2007, págs. 161-176
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-15037
  • Enlaces
  • Resumen
    • We generalize the notion of graph minors to all (finite) simplicial complexes. For every two simplicial complexes $H$ and $K$ and every nonnegative integer $m$, we prove that if $H$ is a minor of $K$ then the non vanishing of Van Kampen's obstruction in dimension $m$ (a characteristic class indicating non embeddability in the $(m-1)$-sphere) for $H$ implies its non vanishing for $K$. As a corollary, based on results by Van Kampen and Flores, if $K$ has the $d$-skeleton of the $(2d+2)$-simplex as a minor, then $K$ is not embeddable in the $2d$-sphere. We answer affirmatively a problem asked by Dey et. al. concerning topology-preserving edge contractions, and conclude from it the validity of the generalized lower bound inequalities for a special class of triangulated spheres.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno