Ir al contenido

Documat


The Cone of Functionals on the Cuntz Semigroup

  • Autores: Leonel Robert
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 113, Nº 2, 2013, págs. 161-186
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-15568
  • Enlaces
  • Resumen
    • The functionals on an ordered semigroup $S$ in the category $\mathbf{Cu}$ - a category to which the Cuntz semigroup of a C*-algebra naturally belongs - are investigated. After appending a new axiom to the category $\mathbf{Cu}$, it is shown that the "realification" $S_{\mathsf{R}}$ of $S$ has the same functionals as $S$ and, moreover, is recovered functorially from the cone of functionals of $S$. Furthermore, if $S$ has a weak Riesz decomposition property, then $S_{\mathsf{R}}$ has refinement and interpolation properties which imply that the cone of functionals on $S$ is a complete distributive lattice. These results apply to the Cuntz semigroup of a C*-algebra. At the level of C*-algebras, the operation of realification is matched by tensoring with a certain stably projectionless C*-algebra.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno