We provide an analytic proof that if $H^\infty$ is the algebra of bounded analytic functions on the unit disk, $A$ is a Banach algebra and $f: H^\infty \rightarrow A$ is a Banach algebras morphism with dense image, then $f((H^\infty)^{-1})$ is dense in $A^{-1}$.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados