Frédérique Watbled
Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados