Otgonbayar Uuye
Let $A$ be a $C^{*}$-algebra. It is well known that the functor $B \mapsto A \otimes B$ of taking the minimal tensor product with $A$ preserves inductive limits if and only if it is exact. $C^{*}$-algebras with this property play an important role in the structure and finite-dimensional approximation theory of $C^{*}$-algebras. We consider a $K$-theoretic analogue of this result and show that the functor $B \mapsto K_{0}(A \otimes B)$ preserves inductive limits if and only if it is half-exact.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados