Ir al contenido

Documat


A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology

  • Autores: Lourdes Tello del Castillo Árbol académico, Jesús Ildefonso Díaz Díaz Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 50, Fasc. 1, 1999, págs. 19-52
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We present some results on the mathematical treatment of a global two-dimensional diffusive climate model. The model is based on a long time averaged energy balance and leads to a nonlinear parabolic equation for the averaged surface temperature. The spatial domain is a compact two-dimensional Riemannian manifold without boundary simulating the Earth. We prove the existence of bounded weak solutions via a fixed point argument. Although, the uniqueness of solutions may fail, in general, we give a uniqueness criterion in terms of the behaviour of the solution near its “ice caps”.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno