Ir al contenido

Documat


Taylor expansion of the density in a stochastic heat equation

  • Autores: Marta Sanz Solé Árbol académico, David Márquez Carreras Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 49, Fasc. 2-3, 1998, págs. 399-416
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove a general result on asymptotic expansions of densities for families of perturbed Wiener functionals. As an application, we consider a stochastic heat equation driven by a space-time white noise $\varepsilon \dot{W}_{t,x}, \varepsilon\in (0, 1]$. The main theorem describes the asymptotics, as $\varepsilon\downarrow 0$, of the density $p^\varepsilon_{t,x}(y)$ of the solution at a fixed point ($t, x$) for some particular value $y\in\mathbb{R}$, which, in the diffusion case, plays the role of the diagonal.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno