Ir al contenido

Documat


A uniform approach to normality for topological spaces

  • Autores: Ankit Gupta, Ratna Dev Sarma
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 17, Nº. 1, 2016, págs. 7-16
  • Idioma: inglés
  • DOI: 10.4995/agt.2016.3919
  • Enlaces
  • Resumen
    • $(\lambda, \mu)$-regularity and $(\lambda, \mu)$-normality are defined for generalized topological spaces. Several variants of normality existing in the literature turn out to be particular cases of $(\lambda, \mu)$-normality. Uryshon's lemma and Titze's extension theorem are discussed in the light of ($\lambda, \mu$)-normality. 

  • Referencias bibliográficas
    • M. E. Abd EI-Monsef, R. A. Mahmoud and S. N. El-Deeb, $beta$-open sets and $beta-$continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1966),...
    • A. Csázàr, Generalized open sets, Acta Math. Hungar. 75 (1997), 65-87.
    • (http://dx.doi.org/10.1023/A:1006582718102)
    • A. Csázàr, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.
    • (http://dx.doi.org/10.1023/A:1019713018007)
    • A. Csázàr, Separation axioms for generalized topologies, Acta Math. Hungar. 104, no. 1-2 (2004), 63-69.
    • (http://dx.doi.org/10.1023/B:AMHU.0000034362.97008.c6)
    • C. Dorsett, Semi-$T_2$, semi-$R_1$ and semi-$R_0$ topological spaces, Ann. Soc. Sci. Bruxelles 92 (1978), 143-150.
    • A. K. Das, A note on spaces between normal and $kappa$-normal spaces, Filomat 27, no. 1 (2013), 85-88.
    • (http://dx.doi.org/10.2298/FIL1301085D)
    • E. Hatir, T. Noiri and S. Yükesl, A decomposition of continuity, Acta Math. Hungar. 70 (1996), 145-150.
    • (http://dx.doi.org/10.1007/BF00113919)
    • J. K. Kohli and A. K. Das, New normality axioms and decomposition of normality, Glasnik Mat. 37 (57) (2002), 163-173.
    • J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13, no. 3, (1963), 71-89.
    • (http://dx.doi.org/10.1112/plms/s3-13.1.71)
    • N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
    • (http://dx.doi.org/10.2307/2312781)
    • A. S. Mashhour, M. E. Abd EI-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt...
    • O. Njastad, On some classes of nearly open sets, Pacific J. Math.15 (1965), 961-970.
    • (http://dx.doi.org/10.2140/pjm.1965.15.961)
    • T. Noiri and E. Hatir, $Lambda$sp-sets and some weak separation axioms, Acta Math. Hungar. 103, no. 3 (2004), 225-232.
    • (http://dx.doi.org/10.1023/B:AMHU.0000028409.42549.72)
    • D. Peleg, A generalized closure and complement phenomenon, Discrete Math. 50 (1984), 285-293.
    • (http://dx.doi.org/10.1016/0012-365X(84)90055-4)
    • J. Tong, A decomposition of continuity, Acta Math. Hungar. 48 (1986), 11-15.
    • (http://dx.doi.org/10.1007/BF01949045)
    • J. Tong, A decomposition of continuity in topological spaces, Acta Math. Hungar. 54 (1989), 51-55.
    • (http://dx.doi.org/10.1007/BF01950708)
    • R. D. Sarma, On convergence in generalized topology, Int. J. Pure and Appl. Math. 60 (2010), 51-56.
    • R. D. Sarma, On extremally disconnected generalized topologies, Acta Math. Hungar. 134, no. 4 (2012), 583-588.
    • (http://dx.doi.org/10.1007/s10474-011-0153-8)
    • N. V. Velicko, $H$-closed topological spaces, Amer. Math. Soc.Transl. 78, no. 2 (1968), 103-118.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno