Ir al contenido

Documat


Normally preordered spaces and continuous multi-utilities

  • Autores: Gianni Bosi Árbol académico, Alessandro Caterino, Rita Ceppitelli
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 17, Nº. 1, 2016, págs. 71-81
  • Idioma: inglés
  • DOI: 10.4995/agt.2016.4561
  • Enlaces
  • Resumen
    • We study regular, normal and perfectly normal preorders by referring to suitable assumptions concerning the preorder and the topology of the space. We also present conditions for the existence of a countable continuous multi-utility representation, hence a Richter-Peleg multi-utility representation, by assuming the existence of a countable net weight.

  • Referencias bibliográficas
    • J. C. R. Alcantud, G. Bosi and M. Zuanon, Richter-Peleg multi-utility representations of preorders, Theory and Decision 80 (2016), 443-450.
    • (http://dx.doi.org/10.1007/s11238-015-9506-z)
    • J. C. R. Alcantud, G. Bosi, M. J. Campión, J. C. Candeal, E. Induráin and C. Rodríguez-Palmero, Continuous utility functions through scales,...
    • (http://dx.doi.org/10.1007/s11238-007-9025-7)
    • G. Bosi, A. Caterino and R. Ceppitelli, Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions,...
    • G. Bosi and G. Herden, Continuous multi-utility representations of preorders, Journal of Mathematical Economics 48 (2012), 212-218.
    • (http://dx.doi.org/10.1016/j.jmateco.2012.05.001)
    • G. Bosi and G. Herden, On continuous multi-utility representations of semi-closed and closed preorders, Mathematical Social Sciences 79 (2016),...
    • (http://dx.doi.org/10.1016/j.mathsocsci.2015.10.006)
    • G. Bosi and R. Isler, Separation axioms in topological preordered spaces and the existence of continuous order-preserving functions, Applied...
    • (http://dx.doi.org/10.4995/agt.2000.3026)
    • G. Bosi and G. B. Mehta, Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof, Journal...
    • (http://dx.doi.org/10.1016/S0304-4068(02)00058-7)
    • D. S. Bridges and G. B. Mehta, Representations of Preference Orderings, Springer-Verlag, Berlin, 1995.
    • (http://dx.doi.org/10.1007/978-3-642-51495-1)
    • D. Carfí, A. Caterino and R. Ceppitelli, State preference models and jointly continuous utilities, Proceedings of 15-th International Conference...
    • A. Caterino and R. Ceppitelli, Jointly continuous utility functions on submetrizable k$_omega$-spaces, Topology and its Applications 190 (2015)...
    • (http://dx.doi.org/10.1016/j.topol.2015.04.012)
    • A. Caterino, R. Ceppitelli and L. Holá, Some generalizations of Back's Theorem, Topology and its Applications 160 (2013), 2386-2395.
    • (http://dx.doi.org/10.1016/j.topol.2013.07.033)
    • A. Caterino, R. Ceppitelli and F. Maccarino, Continuous utility functions on submetrizable hemicompact k-spaces, Applied General Topology...
    • (http://dx.doi.org/10.4995/agt.2009.1732)
    • R. Engelking, General Topology, Berlin:Heldermann, 1989.
    • O. Evren and E. A. Ok, On the multi-utility representation of preference relations, Journal of Mathematical Economics 47 (2011), 554-563.
    • (http://dx.doi.org/10.1016/j.jmateco.2011.07.003)
    • H.-P. A. Künzi, Completely regular ordered spaces, Order 7 (1990), 283-293.
    • (http://dx.doi.org/10.1007/BF00418656)
    • V. L. Levin, Functionally closed preorders and strong stochastic dominance, Soviet Math. Doklady 32 (1985), 22-26.
    • E. Minguzzi, Normally preordered spaces and utilities, Order 30 (2013), 137-150.
    • (http://dx.doi.org/10.1007/s11083-011-9230-4)
    • L. Nachbin, Topology and order, Van Nostrand, Princeton, 1965.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno