Ir al contenido

Documat


Remarks on independent sequences and dimension in topological linear spaces

  • Autores: Zbigniew Lipecki
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 49, Fasc. 1, 1998, págs. 53-66
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We show that for a metrizable locally convex space $X$ the following conditions are equivalent: (i) every linearly independent sequence in $X$ has an $\omega$-independent subsequence; (ii) $X$ contains no subspace isomorphic to $\varphi$; (iii)$X$ admits a continuous norm. We also show that a dual Banach space equipped with the weak$^\ast$ topology satisfies (i). Moreover, we are concerned with the algebraic dimension of closed convex subsets of $F$-spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno