Ir al contenido

Documat


Symmetries of quasiplatonic Riemann surfaces

  • Gareth A. Jones [1] ; David Singerman [1] ; Paul D. Watson [2]
    1. [1] University of Southampton

      University of Southampton

      GB.ENG.M4.24UJ, Reino Unido

    2. [2] Peter Symonds College
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 4, 2015, págs. 1403-1414
  • Idioma: inglés
  • DOI: 10.4171/RMI/873
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We state and prove a corrected version of a theorem of Singerman, which relates the existence of symmetries (anticonformal involutions) of a quasiplatonic Riemann surface S (one uniformised by a normal subgroup N of finite index in a cocompact triangle group Δ) to the properties of the group G=Δ/N. We give examples to illustrate the revised necessary and sufficient conditions for the existence of symmetries, and we relate them to properties of the associated dessins d'enfants, or hypermaps.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno