Ir al contenido

Documat


On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces

  • Qionglei Chen [1] ; Changxing Miao [1] ; Zhifei Zhang [2]
    1. [1] Institute of Applied Physics and Computational Mathematics

      Institute of Applied Physics and Computational Mathematics

      China

    2. [2] Peking University

      Peking University

      China

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 4, 2015, págs. 1375-1402
  • Idioma: inglés
  • DOI: 10.4171/RMI/872
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove the ill-posedness of the 3-D baratropic Navier–Stokes equation for the initial density and velocity belonging to the critical Besov space (B˙3/p,1+ρ¯,B˙3/p−1p,1)(B˙p,13/p+ρ¯,B˙p,13/p−1) for p>6 in the sense that a "norm inflation" happens in finite time, here ρ¯ is a positive constant. While, the compressible viscous heat-conductive flows is ill-posed for the initial density, velocity and temperature belonging to the critical Besov space (B˙3/p,1+ρ¯,B˙3/p−1p,1,B˙3/p−2p,1)(B˙p,13/p+ρ¯,B˙p,13/p−1,B˙p,13/p−2) for p>3.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno