Ir al contenido

Documat


Endpoint estimates for commutators of singular integrals related to Schrödinger operators

  • Luong Dang Ky [1]
    1. [1] Quy Nhon University

      Quy Nhon University

      Vietnam

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 4, 2015, págs. 1333-1373
  • Idioma: inglés
  • DOI: 10.4171/RMI/871
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let L=−Δ+V be a Schrödinger operator on Rd, d≥3, where V is a nonnegative potential, V≠0, and belongs to the reverse H\"older class RHd/2. In this paper, we study the commutators [b,T] for T in a class KL of sublinear operators containing the fundamental operators in harmonic analysis related to L. More precisely, when T∈KL, we prove that there exists a bounded subbilinear operator R=RT:H1L(Rd)×BMO(Rd)→L1(Rd) such that (⋆)|T(S(f,b))|−R(f,b)≤|[b,T](f)|≤R(f,b)+|T(S(f,b))|, where S is a bounded bilinear operator from H1L(Rd)×BMO(Rd) into L1(Rd) which does not depend on T. The subbilinear decomposition (⋆) allows us to explain why commutators with the fundamental operators are of weak type (H1L,L1), and when a commutator [b,T] is of strong type (H1L,L1).

      Also, we discuss the H1L-estimates for commutators of the Riesz transforms associated with the Schrödinger operator L.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno