Ir al contenido

Documat


Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds. II

  • Alexander Brudnyi [1] ; Damir Kinzebulatov [2]
    1. [1] University of Calgary

      University of Calgary

      Canadá

    2. [2] Fields Institute for Research in Mathematical Sciences

      Fields Institute for Research in Mathematical Sciences

      Canadá

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 4, 2015, págs. 1167-1230
  • Idioma: inglés
  • DOI: 10.4171/RMI/866
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H∞). In particular, in this context we obtain results on holomorphic extension from complex sub manifolds, properties of divisors, corona-type theorems, holomorphic analogues of the Peter–Weyl approximation theorem, Hartogs-type theorems, characterizations of uniqueness sets, etc. Our proofs are based on analogues of Cartan theorems A and B for coherent-type sheaves on maximal ideal spaces of these algebras proved in Part I.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno