Ir al contenido

Documat


A Liouville-type theorem for very weak solutions of nonlinear partial differential equations

  • Autores: Alberto Fiorenza
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 48, Fasc. 4-6, 1997, págs. 513-522
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let us consider the variational equation in $\mathbb{R}^n$ $$div\bigl(a(x)F'(\vert \nabla_u\vert)\frac{\nabla_u}{\vert\nabla_u\vert}\bigl)= 0$$ where $0 < \lambda 0\leq a(x)\leq\Lambda_0 < \infty$ and $F$ is a convex increasing function verifying suitable conditions. We prove that the \textit{very weak solutions} of such equation, whose gradient belongs to a suitable Orlicz space, must be constant almost everywhere. The result applies, in particular, to the case in which $F$ is the power $F(t) = t^p (p > 1)$, i.e. to the variational equation in $\mathbb{R}^n$ $$div\bigl(a(x)\vert\nabla_u\vert^{p-2}\nabla_u\bigl) = 0$$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno