Ir al contenido

Documat


La naturaleza distribuida de la generalización de patrones

  • Autores: Ferdinand D. Rivera
  • Localización: PNA: Revista de investigación en didáctica de la matemática, ISSN-e 1887-3987, Vol. 9, Nº. 3, 2015, págs. 165-191
  • Idioma: español
  • DOI: 10.30827/pna.v9i3.6102
  • Títulos paralelos:
    • The distributed nature of pattern generalization
  • Enlaces
  • Resumen
    • español

      Sobre la base de una revisión de trabajos recientes en el área de generalización de patrones (PG), este artículo aboga por una visión distribuida de PG, que básicamente sitúa la capacidad de procesamiento en términos de convergencias entre diferentes factores que influyen en PG. En consecuencia, la naturaleza distribuida conduce a diferentes tipos de PG que dependen de la naturaleza de una tarea PG dada y una serie de factores cognitivos, socioculturales, inexplorados y relacionadas con el aula. Alumnos individuales se basan en una compleja red de opciones paralelas, donde cada elección depende de la fortaleza de la formación continua y las conexiones entre los factores, con algunos factores más predecibles que otros.

    • English

      Drawing on a review of recent work conducted in the area of pattern generalization (PG), this paper makes a case for a distributed view of PG, which basically situates processing ability in terms of convergences among several different factors that influence PG. Consequently, the distributed nature leads to different types of PG that depend on the nature of a given PG task and a host of cognitive, sociocultural, classroom-related, and unexplored factors. Individual learners draw on a complex net of parallel choices, where every choice depends on the strength of ongoing training and connections among factors, with some factors appearing to be more predictable than others.

  • Referencias bibliográficas
    • Ainley, J., Wilson, K., & Bills, L. (2003). Generalizing the context and generalizing the calculation. In N. Pateman, B. Dougherty, &...
    • Bastable, V., & Schifter, D. (2008). Classroom stories: Examples of elementary students engaged in early algebra. In J. Kaput, D. Carraher,...
    • Britt, M., & Irwin, K. (2011). Algebraic thinking with and without algebraic representation: A pathway for learning. In J. Cai & E....
    • Carraher, D., Martinez, M., & Schliemann, A. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22.
    • Clements, D., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York, NY: Erlbaum.
    • Cooper, T., & Warren, E. (2011). Years 2 to 6 students’ ability to generalize: Models, representations, and theory for teaching and learning....
    • Ellis, A. (2007). Connections between generalizing and justifying: Students’ reasoning with linear relationships. Journal for Research in...
    • Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell & R....
    • Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA:...
    • Iwasaki, H., & Yamaguchi, T. (1997). The cognitive and symbolic analysis of the generalization process: The comparison of algebraic signs...
    • Küchemann, D. (2010). Using patterns generically to see structure. Pedagogies, 5(3), 233-250.
    • Lee, L., & Freiman, V. (2004). Tracking primary students’ understanding of patterns. In D. McDougall & J. Ross (Eds.), Proceedings...
    • MacGregor, M., & Stacey, K. (1992). A comparison of pattern-based and equation-solving approaches to algebra. In B. Southwell, K. Owens,...
    • Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structures for all. Mathematics Education Research Journal, 21(2),...
    • Mulligan, J. T., Prescott, A., & Mitchelmore, M. C. (2004). Children’s development of structure in early mathematics. In M. Høines &...
    • Nathan, M., & Kim, S. (2007). Pattern generalization with graphs and words: A cross-sectional and longitudinal analysis of middle school...
    • National Research Council (2013). The mathematical sciences in 2025. Washington, DC: The National Academies Press.
    • Noss, R., Healy, L., & Hoyles, C. (1997). The construction of mathematical meanings: Connecting the visual with the symbolic. Educational...
    • Papic, M., Mulligan, J. T., & Mitchelmore, M. (2009). The growth of mathematica patterning strategies in preschool children. In M. Tzekaki,...
    • Papic, M., Mulligan, J. T., & Mitchelmore, M. (2011). Assessing the development of presechoolers’ mathematical patterning. Journal for...
    • Plaut, D., McClelland, J., Seindenberg, M., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles...
    • Radford, L. (1999). The rhetoric of generalization: A cultural semiotic approach to students’ processes of symbolizing. In O. Zaslavsky (Ed.),...
    • Radford, L. (2000). Students’ processes of symbolizing in algebra: A semiotic analysis of the production of signs in generalizing tasks. In...
    • Radford, L. (2001a). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics,...
    • Radford, L. (2001b). Factual, contextual, and symbolic generalizations in algebra. In M. V. D. Hueuvel-Panhuizen (Ed.), Proceedings of the...
    • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semioticcultural approach to students’ types of generalization. Mathematical...
    • Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In S. Alatorre, J. Cortina, M. Saiz, &...
    • Rivera, F. (2010). Second grade students’ preinstructional competence in patterning activity. In M. Pinto & T. Kawasaki (Eds.), Proceedings...
    • Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical considerations. New York, NJ: Springer.
    • Rivera, F., & Becker, J. (2011). Formation of pattern generalization involving linear figural patterns among middle school students: Results...
    • Samson, D. (2011). Capitalizing on inherent ambiguities in symbolic expressions of generality. Australian Mathematics Teacher, 67(1), 28-32.
    • Samson, D., & Schäfer, M. (2011). Enactivism, figural apprehension, and knowledge objectification: An exploration of figural pattern generalization....
    • Stacey‚ K.‚ & MacGregor‚ M. (2001). Curriculum reform and approaches to algebra. In R. Sutherland‚ T. Rojano‚ A. Bell‚ & R. Lins....
    • Steele, D., & Johanning, D. (2004). A schematic-theoretic view of problem solving and development of algebraic thinking. Educational Studies...
    • Vale, I., & Pimentel, T. (2010). From figural growing patterns to generalization: A path to algebraic thinking. In M. Pinto & T. Kawasaki...
    • Watson, A. (2009). Thinking mathematically, disciplined noticing, and structures of attention. In S. Lerman & B. Davis (Eds.), Mathematical...
    • Yerushalmy, M. (1993). Generalization in geometry. In J. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer: What is...
    • Yevdokimov, O. (2008). Making generalizations in geometry: Students’ views on the process. In O. Figueras, J. L. Cortina, S. Alatorre, T....
    • Zazkis, R., Liljedahl, P., & Chernoff, E. (2008). The role of examples in forming and refuting generalizations. ZDM, 40(1), 131-141.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno