Ir al contenido

Documat


On the dimension of ordered spaces

  • Autores: Bernard Brunet
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 48, Fasc. 3, 1997, págs. 303-314
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we prove that, for every ordered space (ordered set with its order topology i.e. with the topology generated by the family of all intervals $]\leftarrow, a[$ and $]a,\rightarrow [)$ and more generally for every line (space homeomorphic to a subspace of an ordered space and called in (7) generalized ordered space), the small inductive dimension (\textit{ind}), the large inductive dimension (\textit{Ind}), the covering dimension (\textit{dim}) and the nonstandard definition or thickness (\textit{ep}) coincide. More precisely, we prove, that for every line $X\not=\emptyset$, we have: \begin{enumerate}[1.)] \item $ep X = ind X = Ind X = dim X = 0$ if and only if $X$ is totally disconnected. \item $ep X = ind X = Ind X = dim X = 1$ if and only if $X$ is not totally disconnected\end{enumerate}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno