Ir al contenido

Documat


On the number of claims until ruin in a two-barrier renewal risk model with Erlang mixtures

  • M.V. Boutsikas [1] ; A.C. Rakitzis [2] ; D.L. Antzoulakos [1]
    1. [1] University of Piraeus

      University of Piraeus

      Grecia

    2. [2] University of the Aegean

      University of the Aegean

      Dimos Lesbos, Grecia

  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 294, Nº 1 (1 March 2016), 2016, págs. 124-137
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2015.08.013
  • Enlaces
  • Resumen
    • In this paper, we consider the renewal risk model and we are interested in the distribution of the number νν of claims until the first time that insurer’s surplus process falls below zero (ruin) or exceeds a predefined upper barrier b>u (safety level), immediately after the payment of a claim. By using exponentially tilted measures we derive an expression for the joint generating function of νν and Sν, the surplus amount at termination time. This expression is built upon the generating functions of the overshoot and undershoot of the surplus process. Furthermore, we offer explicit results for the case where the claim amounts and the claim inter-arrival times follow mixed Erlang Distributions. We finally propose and implement an algorithm for the numerical calculation of the distributions of interest via appropriate computer algebra software.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno