Let $X$ be a Banach space and let $1\leq r < +\infty$. We prove that $X^\ast $ is isomorphic to a subspace of an $L^r(\mu)$-space if and only if the operator $(\alpha_n)\in\ell_r\rightarrow\sum \alpha_n x_n\in X$ is $s$-nuclear $(1/r + 1/s = 1)$ whenever $\sum\parallel x_n\parallel^s < +\infty$.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados