Ir al contenido

Documat


Analysis and standardization of landings per unit effort of red shrimp Aristeus antennatus from the trawl fleet of Barcelona (NW Mediterranean)

  • Valeria Mamouridis [2] ; Francesc Maynou [2] ; Germán Aneiros Pérez [1]
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    2. [2] Instituto de Ciencias del Mar

      Instituto de Ciencias del Mar

      Barcelona, España

  • Localización: Scientia Marina, ISSN 0214-8358, Vol. 78, Nº. 1, 2014, págs. 7-16
  • Idioma: inglés
  • DOI: 10.3989/scimar.03926.14a
  • Enlaces
  • Resumen
    • español

      Se llevó a cabo un análisis del volumen de desembarcos por unidad de esfuerzo (LPUE) de la gamba roja (Aristeus antennatus) de la flota de arrastre en el puerto de Barcelona (Mediterráneo noroccidental) mediante modelos aditivos generalizados (GAM). El conjunto de datos cubre un periodo de 15 años (1994-2008) y consiste en un amplio espectro de predictores: variables dependientes de la flota (el número de mareas efectuadas por cada embarcación y las características técnicas de estas, como el tonelaje bruto), temporales (variabilidad inter- e intra-anual), ambientales (índice de Ocilación del Atlántico Norte [NAO]) y económicas (precio de la gamba roja y precio del combustible). Todos los predictores a nivel individual tienen impacto sobre LPUE, pero algunos de ellos pierden su poder explicativo cuando se considéran conjuntamente con otros, como en el caso del índice NAO. Nuestros resultados muestran que seis variables del conjunto pueden incorporarse en un modelo global con una desvianza total explicada ED=43%. Las variables más importantes fueron aquellas relacionadas con el esfuerzo (número de mareas, tonelaje y grupos), con devianza ED=20.58%, después las variables temporales, las cuales presentaron ED=13.12%, y finalmentelos predictores económicos representados por el precio de la gamba con ED=9.30%. A nivel individual, la variable con mayor contribución es la variabilidad inter-annual (ED=12.40%).

      Este elevado valor de devianza sugiere que muchos factores correlacionados con el tiempo pueden afectar la variabilidad de LPUE, como los factores ambientales (NAO en años particulares) y económicos, como el precio del combustible. La estandardización de LPUE con respecto al esfuerzo proporciona un índice de abundancia de la gamba roja muy parecido al índice de abundancia independiente de la pesquería obtenido mediante el programa de campañas experimentales MEDITS.

    • English

      Monthly landings and effort data from the Barcelona trawl fleet (NW Mediterranean) were selected to analyse and standardize the landings per unit effort (LPUE) of the red shrimp (Aristeus antennatus) using generalized additive models. The dataset covers a span of 15 years (1994-2008) and consists of a broad spectrum of predictors: fleet-dependent (e.g. number of trips performed by vessels and their technical characteristics, such as the gross registered tonnage), temporal (inter- and intra-annual variability), environmental (North Atlantic Oscillation [NAO] index) and economic (red shrimp and fuel prices) variables. All predictors individually have an impact on LPUE, though some of them lose their predictive power when considered jointly. That is the case of the NAO index. Our results show that six variables from the whole set can be incorporated into a global model with a total explained deviance (ED) of 43%. We found that the most important variables were effort-related predictors (trips, tonnage, and groups) with a total ED of 20.58%, followed by temporal variables, with an ED of 13.12%, and finally the red shrimp price as an economic predictor with an ED of 9.30%. Taken individually, the main contributing variable was the inter-annual variability (ED=12.40%). This high ED value suggests that many factors correlated with inter-annual variability, such as environmental factors (the NAO in specific years) and fuel price, could in turn affect LPUE variability. The standardized LPUE index with the effort variability removed was found to be similar to the fishery-independent abundance index derived from the MEDITS programme.

  • Referencias bibliográficas
    • Akaike H. 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov B.N., Csáki F. (eds), Proc. 2nd Int. Symp....
    • Bas C., Maynou F., Sardà F., Lleonart J. 2003. Variacions demogràfiques a les poblacions d'espècies demersals explotades: els darrers...
    • Bertrand J.A., de Sola L.G., Papaconstantinou C., Relini G., Souplet A. 2002. The general specifications of the MEDITS surveys. Sci. Mar....
    • Brauner N., Shacham M. 1998. Role of range and precision of the independent variable in regression of data. Am. Inst. Chem. Eng. J. 44: 603-611....
    • Brodziak J., O'Brien L. 2005. Do environmental factors affect recruits per spawner anomalies of New England groundfish? ICES J. Mar. Sci....
    • Carbonell A., Carbonell M.S., Demestre M., Grau A., Montserrat S. 1999. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology...
    • Cardinale M., Osio G.C., Charef A. (eds). 2012. Report of the Scientific, Technical and Economic Committee for Fisheries on Assessment of...
    • Cartes J.E., Sardà F. 1992. Abundance and diversity of decapod crustaceans in the deep-Catalan sea (western Mediterranean). J. Nat. Hist....
    • Craven P., Wahba G. 1979. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized...
    • Denis V., Lejeune J., Robin J.P. 2002. Spatio-temporal analysis of commercial trawler data using General Additive models: patterns of Loliginid...
    • Dennard S.T., MacNeil M.A., Treble M.A., Campana S., Fisk A.T. 2010. Hierarchical analysis of a remote, Arctic, artisanal longline fishery....
    • FAO-FISHSTAT. 2011. FAO Fisheries Department, Fishery information, Data and Statistics Unit. FishstatJ, a tool for fishery statistical analysis,...
    • Hastie T., Tibshirani R. 1990. Generalized additive models. Chapman Hall, London. PMCid:PMC332745
    • Hilborn R., Walters C.J. 1992. Quantitative Fisheries Stock Assessment. Chapman & Hall, New York. http://dx.doi.org/10.1007/978-1-4615-3598-0...
    • Lassen H., Medley P. 2000. Virtual population analysis. A practical manual for stock assessment. FAO Fisheries Technical Paper. No. 400. FAO,...
    • Lleonart J., Maynou F. 2003. Fish stock assessments in the Mediterranean: state of the art. Sci. Mar. 67: 37-49.
    • Marriott R.J., Wise B., St John J. 2011. Historical changes in fishing efficiency in the west coast demersal scalefish fishery, Western Australia:...
    • Marx B.D., Eilers P.H.C. 1998. Direct generalized additive modelling with penalized likelihood. Comput. Statist. Data Anal. 28: 193-209. http://dx.doi.org/10.1016/S0167-9473(98)00033-4
    • Maunder M. N., Punt A. E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70: 141-159. http://dx.doi.org/10.1016/j.fishres.2004.08.002
    • Maunder M. N., Sibert J. R., Fonteneau A., Hampton J., Kleiber P., Harley S.J. 2006. Interpreting catch per unit effort data to assess the...
    • Maynou F. 2008. Environmental causes of the fluctuations of red shrimp (Aristeus antennatus) landings in the Catalan Sea. J. Mar. Sys. 71:...
    • Maynou F., Demestre M., Sánchez P. 2003. Analysis of catch per unit effort by multivariate analysis and generalized linear models for deepwater...
    • Neal R.A., Maris R.C. 1985. Fishing biology of shrimps and shrimplike animals. In: Provenzano A.J. (ed.) The Biology of Crustacea Vol 10:...
    • Orsi Relini L., Mannini A., Relini G. 2013. Updating knowledge on growth, population dynamics, and ecology of the blue and red shrimp, Aristeus...
    • Sardà F., Maynou F. 1998. Assessing perceptions: do Catalan fishermen catch more shrimp on Fridays? Fish. Res. 36: 149-157. http://dx.doi.org/10.1016/S0165-7836(98)00102-7
    • Sardà F., Maynou F., Talló L. 1997. Seasonal and spatial mobility patterns of rose shrimps Aristeus antennatus in the Western Mediterranean:...
    • Scott D.W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York. http://dx.doi.org/10.1002/9780470316849
    • Stefánsson G. 1996. Analysis of groundfish survey abundance data: combining the. GLM and delta approaches. ICES J. Mar. Sci. 53: 577-588....
    • Su N.J., Yeh S.Z., Sun C.L., Punt A.E., Chen Y., Wang S.P. 2008. Standardizing catch and effort data of the Taiwanese distant-water longline...
    • Wasserman L. 2005. All of Nonparametric Statistics. Springer, New York.
    • Wood S. N. 2006. Generalized Additive Models: An Introduction with R. CRC/Chapman Hall, Boca Raton, Florida.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno