Ir al contenido

Documat


Ontology optimization tactics via distance calculating

  • Yun Gao [1] ; Mohammad Reza Farahani [2] ; Wei Gao [1]
    1. [1] Yunnan Normal University

      Yunnan Normal University

      China

    2. [2] Iran University of Science and Technology

      Iran University of Science and Technology

      Irán

  • Localización: Applied Mathematics and Nonlinear Sciences, ISSN-e 2444-8656, Vol. 1, Nº. 1, 2016, págs. 154-169
  • Idioma: inglés
  • DOI: 10.21042/amns.2016.1.00012
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article, we propose an ontology learning algorithm for ontology similarity measure and ontology mapping in view of distance function learning techniques. Using the distance computation formulation, all the pairs of ontology vertices are mapped into real numbers which express the distance of their corresponding vectors. The more distance between two vertices, the smaller similarity between their corresponding concepts. The stabilities of our learning algorithm are defined and several bounds are yielded via stability assumptions. The simulation experimental conclusions show that the new proposed ontology algorithm has high efficiency and accuracy in ontology similarity measure and ontology mapping in certain engineering applications.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno