Ir al contenido

Documat


Towards Oka–Cartan theory for algebras of holomorphic functions on coverings of Stein manifolds I

  • Alexander Brudnyi [1] ; Damir Kinzebulatov [2]
    1. [1] University of Calgary

      University of Calgary

      Canadá

    2. [2] Fields Institute for Research in Mathematical Sciences

      Fields Institute for Research in Mathematical Sciences

      Canadá

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 3, 2015, págs. 989-1032
  • Idioma: inglés
  • DOI: 10.4171/RMI/861
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona-type theorems, properties of divisors, holomorphic analogs of the Peter–Weyl approximation theorem, Hartogs-type theorems, characterization of uniqueness sets. The model examples of these algebras are:

      (1) Bohr’s algebra of holomorphic almost periodic functions on tube domains;

      (2) algebra of all fibrewise bounded holomorphic functions (e.g., arising in the corona problem for H∞).

      Our approach is based on an extension of the classical Oka–Cartan theory to coherent-type sheaves on the maximal ideal spaces of these algebras – topological spaces having some features of complex manifolds.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno