Ir al contenido

Documat


Brownian motion on treebolic space: escape to infinity

  • Alexander Bendikov [1] ; Laurent Saloff-Coste [2] ; Maura Salvatori [4] ; Wolfgang Woess [3]
    1. [1] University of Wrocław

      University of Wrocław

      Breslavia, Polonia

    2. [2] Cornell University

      Cornell University

      City of Ithaca, Estados Unidos

    3. [3] Graz University of Technology

      Graz University of Technology

      Graz, Austria

    4. [4] Università di Milano
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 3, 2015, págs. 935-976
  • Idioma: inglés
  • DOI: 10.4171/RMI/859
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Treebolic space is an analog of the SolSol geometry, namely, it is the horocylic product of the hyperbolic upper half plane H and the homogeneous tree T=Tp with degree p+1≥3, the latter seen as a one-complex. Let hh be the Busemann function of T with respect to a fixed boundary point. Then for real q>1 and integer p≥2, treebolic space HT(q,p) consists of all pairs (z=x+iy,w)∈H×T with h(w)=logqy. It can also be obtained by glueing together horizontal strips of H in a tree-like fashion. We explain the geometry and metric of HT and exhibit a locally compact group of isometries (a horocyclic product of affine groups) that acts with compact quotient. When q=p, that group contains the amenable Baumslag–Solitar group BSp) as a co-compact lattice, while when q≠p, it is amenable, but non-unimodular. HT(q,p) is a key example of a strip complex in the sense of [4].$ Relying on the analysis of strip complexes developed by the same authors in [4], we consider a family of natural Laplacians with "vertical drift" and describe the associated Brownian motion. The main difficulties come from the singularities which treebolic space (as any strip complex) has along its bifurcation lines. In this first part, we obtain the rate of escape and a central limit theorem, and describe how Brownian motion converges to the natural geometric boundary at infinity. Forthcoming work will be dedicated to positive harmonic functions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno