Within the present study the elastic response of a flexible open cell polyurethane foam was studied by means of experimental compression test and finite element (FE) modelling. The compression tests revealed a pronounced sample size effect which was taken into account using an analytical model. In order to eliminate the sample size and damage effects, a minimal sample size of at least 50 times the cell size was necessary in the case of the flexible foam. Surface evolver software was used to model the open cell foam structures. The FE unit cells are based on the well-known Kelvin cell and the more complex Weaire-Phelan cell topology. In both cases the cross sectional shape of the cell edges was completely determined by the minimization of the surface energy. The thus build FE-models possess a good resemblance to real open cell foam structures. The influence of relative density and shape anisotropy on the elastic properties of the cellular structures was analysed using the FE-models.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados