Ir al contenido

Documat


Roth's theorem in the Piatetski-Shapiro primes

  • Mariusz Mirek [1]
    1. [1] Universität Bonn
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 2, 2015, págs. 617-656
  • Idioma: inglés
  • DOI: 10.4171/RMI/848
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let P denote the set of prime numbers and, for an appropriate function hh, define a set Ph={p∈P:∃n∈N p=⌊h(n)⌋}. The aim of this paper is to show that every subset of Ph having positive relative upper density contains a nontrivial three-term arithmetic progression. In particular the set of Piatetski-Shapiro primes of fixed type 71/72<γ<1, i.e., {p∈P:∃n∈N p=⌊n1/γ⌋} has this feature. We show this by proving the counterpart of the Bourgain–Green restriction theorem for the set Ph.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno