Loukas Grafakos , Danqing He, Nigel J. Kalton , Mieczyslaw Mastylo
We prove that multilinear paraproducts are bounded from products of Lebesgue spaces Lp1×⋯×Lpm+1 to Lp,∞, when 1≤p1,…,pm,pm+1<∞1/p1+⋯+1/pm+1=1/p. We focus on the endpoint case when some indices pjpj are equal to 11, in particular we obtain a new proof of the estimate L1×⋯×L1→L1/(m+1),∞.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados