Ir al contenido

Documat


On the roots of generalized Wills μ-polynomials

  • María A. Hernández Cifre [1] ; Jesús Yepes Nicolás [2]
    1. [1] Universidad de Murcia

      Universidad de Murcia

      Murcia, España

    2. [2] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 2, 2015, págs. 477-496
  • Idioma: inglés
  • DOI: 10.4171/RMI/842
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate the roots of a family of geometric polynomials of convex bodies associated to a given measure μμ on the non-negative real line R≥0, which arise from the so called Wills functional. We study its structure, showing that the set of roots in the upper half-plane is a closed convex cone, containing the non-positive real axis R≤0, and strictly increasing in the dimension, for any measure μμ. Moreover, it is proved that the 'smallest' cone of roots of these μμ-polynomials is the one given by the Steiner polynomial, which provides, for example, additional information about the roots of μμ-polynomials when the dimension is large enough. It will also give necessary geometric conditions for a sequence {mi:i=0,1,…} to be the moments of a certain measure on R≥0, a question regarding the so called (Stieltjes) moment problem.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno