Ir al contenido

Documat


Admissible restriction of holomorphic discrete series for exceptional groups

  • Autores: Jorge Vargas
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 2, 2008, págs. 67-80
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this note, we give results about the restriction of a holomorphic discrete series of an exceptional simple Lie real group to a subgroup.

  • Referencias bibliográficas
    • Adams, J.F.. (1996). Lectures on exceptional Lie groups. University of Chicago Press.
    • Benson, C., Ratcliff, G.. (1996). A classification of multiplicity free actions. J. Algebra. 181. 152-186
    • Bourbaki, N.. (1982). Groupes et Algèbres de Lie. Masson.
    • Brion, M.. (1987). Sur l'image de l'application moment. Springer. 177-192
    • Dynkin, E.B.. (1957). Maximal subgroups of classical groups. Transl. AMS (2). 6. 245-378
    • Duflo, M., Vargas, J.. Proper maps and multiplicities.
    • Faraut, J., Koranyi, A.. (1995). Analysis on symmetric connes. Oxford University Press.
    • Freundenthal, H., de Vries, H.. (1969). Linear Lie Groups. Academic Press.
    • Huang, J., Vogan, D.. The moment map and the geometry of admissible representations.
    • Kimura, T.. (1983). A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplication. J. Algebra. 83....
    • Kimura, T.. (2002). Introduction to prehomogeneous vector spaces. AMS.
    • Kobayashi, T.. (1998). Discrete decomposability of the restriction of with respect to reductive subgroups. Invent. Math.. 131. 229-256
    • Kobayashi, T.. (2002). Branching Problems of Unitary representations. Proceedings of the International Congress of Mathematicians. II. 615-627
    • Kobayashi, T.. (2005). Lie theory: Unitary representations and compactifications of symmetric spaces. Birkhäuser Boston. Boston^eMA MA. 139-207
    • Kobayashi, T.. Multiplicity free Representations and Visible actions on complex manifolds.
    • Komrakov, B.. (1990). Maximal subalgebras of real Lie algebras and a problem of Sophus Lie. Soviet Math. Dokl.. 41. 269-273
    • Littelmann, P.. (1989). Koreguläre und äquidimensionale Darstellungen. J. Algebra. 123. 193-222
    • Ness, L.. (1984). A stratification of the nullcone via moment map. Amer. J. Math.. 106. 1281-1330
    • Paradan, E.. Multiplicities of holomorphic representations relatively to compact subgroups. Oberwolfach Report. 49/2007.
    • Schmid, W.. (1969). Die Randerwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. Inventiones Math.. 9. 61-80
    • Simondi, S.. Restricción de representaciones de cuadrado integrable.
    • Solomon, S.. (2005). Irreducible linear group-subgroup pairs with the same invariants. J. Lie Theory. 15. 105-123
    • Solomon, S.. (2006). Orthogonal linear group-subgroup pairs with the same invariants. J. Algebra. 299. 623-647
    • Vargas, J.. (2003). Restriction of square integrable representations: a review. Symposium in representation theory. Hokadate. 62-79
    • Vergne, M.. (1998). Quantization of algebraic cones and Vogan's conjecture. Pacific Journal of Math.. 182. 114-135
    • Vogan, D.. (1991). Harmonic Analysis on Reductive Lie groups. Birkhäuser. 315-388
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno