Ir al contenido

Documat


Hypergeometric functions and binomials

  • Autores: Alicia Dickenstein
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 2, 2008, págs. 97-110
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We highlight the role of primary decomposition of binomial ideals in a commutative polynomial ring, in the description of the holonomicity, the holonomic rank, and the shape of solutions of multivariate hypergeometric differential systems of partial differential equations.

  • Referencias bibliográficas
    • Adolphson, Alan. (1994). Hypergeometric functions and rings generated by monomials. Duke Math. J.. 73. 269-290
    • Appell, Paul. (1880). Sur les séries hypergéometriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles....
    • Birkeland, R.. (1927). Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen. Mathematische Zeitschrift. 26. 565-578
    • Björk, Jan-Erik. (1993). Analytic -modules and applications. Kluwer Academic Publishers Group. Dordrecht.
    • Björk, Jan Erik. (1979). Rings of differential operators. North-Holland. Amsterdam.
    • Cattani, E., D'Andrea, C., Dickenstein, A.. (1999). The -hypergeometric system associated with a monomial curve. Duke Math. J.. 99. 179-207
    • Cattani, Eduardo, Dickenstein, Alicia. (2007). Counting solutions to binomial complete intersections. J. of Complexity. 23. 82-107
    • Dickenstein, Alicia, Matusevich, Laura, Miller, Ezra. Binomial -modules.
    • Dickenstein, Alicia, Matusevich, Laura, Miller, Ezra. Combinatorics of binomial primary decomposition.
    • Dickenstein, Alicia, Matusevich, Laura Felicia, Sadykov, Timur. (2005). Bivariate hypergeometric -modules. Adv. Math.. 196. 78-123
    • Dickenstein, Alicia, Sturmfels, Bernd. (2002). Elimination in codimension two. J. Symbolic Comput.. 34. 119-135
    • Dickenstein, Alicia, Sadykov, Timur. (2007). Bases in the solution space of the Mellin system. Mat. Sb.. 198. 59-80
    • Eisenbud, David, Sturmfels, Bernd. (1996). Binomial ideals. Duke Math. J.. 84. 1-45
    • Erdélyi, Arthur. (1950). Hypergeometric functions of two variables. Acta Math.. 83. 131-164
    • Euler, Leonhard. (1748). Introductio in Analysis Infinitorum. Laussane. 1.
    • Gauss, Carl Friedrich. (1812). Disquisitiones generales circa seriem infinitam: Thesis, Göttingen. Ges. Werke. Göttingen.
    • Gel'fand, I. M., Graev, M. I., Retakh, V. S.. (1992). General hypergeometric systems of equations and series of hypergeometric type. Uspekhi...
    • Gel'fand, I. M., Graev, M. I., Zelevinskiy, A. V.. (1987). Holonomic systems of equations and series of hypergeometric type. Dokl. Akad....
    • Gel'fand, I. M., Zelevinskiy, A. V., Kapranov, M. M.. (1989). Hypergeometric functions and toral manifolds. Functional Analysis and its...
    • Gel'fand, I. M., Kapranov, M., Zelevinski, A.. (1990). Generalized Euler integrals and -hypergeometric functions. Advances in Mathematics....
    • Horn, J.. (1889). Über die konvergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen. Math. Ann.. 34. 544-600
    • Horn, J.. (1931). Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann.. 105. 381-407
    • Hotta, Ryoshi. (1991). Equivariant -modules. Proceedings of ICPAM Spring School in Wuhan. Paris.
    • Kummer, Ernst Eduard. (1836). Über die hypergeometrische Reihe. J. für Math.. 15.
    • Matusevich, Laura Felicia, Miller, Ezra, Walther, Uli. (2005). Homological methods for hypergeometric families. J. Amer. Math. Soc.. 18. 919-941
    • Mayr, K.. (1937). Über die Auflösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen. Monatshefte für Mathematik und Physik....
    • Mellin, Hjalmar. (1921). Résolution de l'équation algébrique générale à l'aide de la fonction. C.R. Acad. Sc.. 172. 658-661
    • Miller, Ezra, Sturmfels, Bernd. (2005). Combinatorial commutative algebra. Springer-Verlag. New York.
    • Passare, M., Tsikh, A.. (2004). The Legacy of N.H. Abel. Springer-Verlag. 563-582
    • Riemann, Georg Friedrich Bernhard. (1857). Beiträge zur Theorie der durch Gauss'sche Reihe darstellbaren Functionen. K. Gess. Wiss. Göttingen....
    • Sadykov, Timur. (2002). On the Horn system of partial differential equations and series of hypergeometric type. Math. Scand.. 91. 127-149
    • Schulze, Mathias, Walther, Uli. (2008). Irregularity of hypergeometric systems via slopes along coordinate subspaces. Duke Math. J.. 142....
    • Saito, Mutsumi, Sturmfels, Bernd, Takayama, Nobuki. (2000). Gröbner Deformations of Hypergeometric Differential Equations. Springer-Verlag....
    • Sturmfels, Bernd. (1996). Gröbner bases and convex polytopes. American Mathematical Society. Providence^eRI RI.
    • Sturmfels, Bernd. (2000). Solving algebraic equations in terms of A-hypergeometric series. Discrete Math.. 210. 171-181
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno