Ir al contenido

Documat


Bifurcation theory applied to the analysis of power systems

  • Autores: Gustavo Revel, D. M. Alonso, Jorge L. Moiola
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 1-14
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, several nonlinear phenomena found in the study of power system networks are described in the context of bifurcation theory. Toward this end, a widely studied 3-bus power system model is considered. The mechanisms leading to static and dynamic bifurcations of equilibria as well as a cascade of period doubling bifurcations of periodic orbits are investigated. It is shown that the cascade verifies the Feigenbaum's universal theory. Finally, a two parameter bifurcation analysis reveals the presence of a Bogdanov-Takens codimension-two bifurcation acting as an organizing center for the dynamics. In addition, evidence on the existence of a complex global phenomena involving homoclinic orbits and a period doubling cascade is included.

  • Referencias bibliográficas
    • Abed, E. H., Varaiya, P. P.. (1984). Nonlinear oscillations in power systems. Int. J. Electric Power and Energy Systems. 6. 37-43
    • Anderson, P. M., Fouad, A. A.. (1994). Power system control and stability. New York.
    • Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J.,...
    • Budd, C. J., Wilson, J. P.. (2002). Bogdanov-Takens bifurcation points and Šil'nikov homoclinicity in a simple power-system model of voltage...
    • Dobson, I., Chiang, H. D.. (1989). Towards a theory of voltage collapse in electric power systems. Systems Control Lett.. 13. 253-262
    • Dobson, I., Van Cutsem, T., Vournas, C., DeMarco, C. L., Venkatasubramanian, M., Overbye, T., Cañizares, C. A.. (Augu). Voltage stability...
    • Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Oldeman, B. E., Sandstede, B., Wang, X.-J.. (2002)....
    • Feigenbaum, M. J.. (1978). Qualititative universality for a class of nonlinear transformations. J. Statist. Phys.. 19. 25-52
    • Feigenbaum, M. J.. (1979). The universal metric properties of nonlinear transformations. J. Statist. Phys.. 21. 669-706
    • Guckenheimer, J., Holmes, P.. (1993). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Verlag. New York....
    • Hill, D. J., Guo, Y., Larsson, M., Wang, Y.. (2003). Bifurcation Control. Springer-Verlag. 155-187
    • Ilic, M., Zaborszky, J.. (2000). Dynamics and control of large electric power systems. John Wiley & Sons. New York.
    • Kundur, P.. (1994). Power system stability and control. McGraw-Hill. New York.
    • Kuznetsov, Yu. A.. (1995). Elements of applied bifurcation theory. Springer-Verlag. New York.
    • Kwatny, H. G., Pasrija, A. K., Bahar, L. Y.. (1986). Static bifurcations in electric power networks: loss of steady-state stability and voltage...
    • Nayfeh, A. H., Harb, A. M., Chin, C. M.. (1996). Bifurcations in a power system model. Int. J. of Bifurcation and Chaos. 6. 497-512
    • Novosel, D., Begovic, M. M., Madani, V.. (2004). Shedding light on blackouts. IEEE Power and Energy Magazine. 2. 32-43
    • Oldeman, B. E., Krauskopf, B., Champneys, A. R.. (2000). Death of period-doublings: locating the homoclinic-doubling cascade. Physica D. 146....
    • Pai, M. A., Sauer, P. W., Lesieutre, B. C., Adapa, R.. (1995). Structural stability in power systems-effect of load models. IEEE Trans. Power...
    • Pereira, L.. (2004). Cascade to black. IEEE Power and Energy Magazine. 2. 54-57
    • Revel, G., Alonso, D. M., Moiola, J. L.. Bifurcation analysis in a power system model. First IFAC Conf. on Analysis and Control of Chaotic...
    • Rosehart, W. D., Cañizares, C. A.. (1998). Elimination of algebraic constraints in power system studies. IEEE Canadian Conf. on Electrical...
    • Sauer, P. W., Pai, M. A.. (1998). Power system dynamics and stability. Prentice Hall. New Jersey.
    • (2003). IEEE guide for synchronous generator modeling practices and applications in power system stability analyses. 1-72
    • Strogatz, S. H.. (1994). Nonlinear dynamics and chaos. Addison-Wesley. Reading^eMA MA.
    • Tan, C. W., Varghese, M., Varaiya, P., Wu, F. F.. (1995). Bifurcation, chaos, and voltage collapse in power systems. Proc. IEEE. 83. 1484-1496
    • Vournas, C. D., Nikolaidis, V. C., Tassoulis, A. A.. (2006). Postmortem analysis and data validation in the wake of the 2004 Athens blackout....
    • Walve, K.. (1986). Modelling of power system components at severe disturbances. International Conf. on Large High Voltage Electric Systems.1-9
    • Wang, H. O., Abed, E. H., Hamdan, A. M.. (1994). Bifurcations, chaos, and crises in voltage collapse of a model power system. IEEE Trans....
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno