Ir al contenido

Documat


Finite element approximation of the vibration problem for a Timoshenko curved rod

  • Autores: E. Hernández, E. Otárola, R. Rodríguez, F. Sanhueza
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 15-28
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The aim of this paper is to analyze a mixed finite element method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displacements and rotations of the vibration modes, as well as a double order of convergence for the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which leads to the conclusion that the method is locking free. A numerical test is reported in order to assess the performance of the method.

  • Referencias bibliográficas
    • Arnold, D.N.. (1981). Discretization by finite elements of a model parameter dependent problem. Numer. Math.. 37. 405-421
    • Arunakirinathar, K., Reddy, B.D.. (1993). Mixed finite element methods for elastic rods of arbitrary geometry. Numer. Math.. 64. 13-43
    • Babuška, I., Osborn, J.. (1991). Handbook of Numerical Analysis. North Holland. Amsterdam. 641-687
    • Babuška, I., Suri, M.. (1992). On locking and robustness in the finite element method. SIAM J. Numer. Anal.. 29. 1261-1293
    • Brezzi, F., Fortin, M.. (1991). Mixed and Hybrid Finite Element Methods. Springer-Verlag. New York.
    • Chapelle, D.. (1997). A locking-free approximation of curved rods by straight beam elements. Numer. Math.. 77. 299-322
    • Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.. (1999). Approximation of the vibration modes of a plate by Reissner-Mindlin...
    • Durán, R., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguez, R.. (2003). Error estimates for low-order isoparametric quadrilateral...
    • Hernández, E., Otárola, E., Rodríguez, R., Sanhueza, F.. Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry....
    • Karami, G., Farshad, M., Yazdchi, M.. (1990). Free vibrations of spatial rods - a finite-element analysis. Comm. Appl. Numer. Methods. 6....
    • Kato, T.. (1995). Perturbation Theory for Linear Operators. Springer Verlag. Berlin.
    • Kikuchi, F.. (1982). Accuracy of some finite element models for arch problems. Comput. Methods Appl. Mech. Engrg.. 35. 315-345
    • Litewka, P., Rakowski, J.. (2001). Free vibrations of shear-flexible and compressible arches by FEM. Internat. J. Numer. Methods Eng.. 52....
    • Loula, A.F.D., Franca, L.P., Hughes, T.J.R., Miranda, I. (1987). Stability, convergence and accuracy of a new finite element method for the...
    • Reddy, B.D., Volpi, M.B.. (1992). Mixed finite element methods for the circular arch problem. Comput. Methods Appl. Mech. Engrg.. 97. 125-145
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno