Ir al contenido

Documat


The Duality Between Algebraic Posets and Bialgebraic Frames: A Lattice Theoretic Perspective

  • Autores: James B. Hart, Constantine Tsinakis
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 83-98
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper sets two goals. The first is to present algebraists with a purely order-theoretic derivation of the adjunction between the category DCPO of DCPOs (directed complete posets) and the category Frm of frames. This adjunction restricts to several Stone-type dualities which are well-known and of considerable interest to computer scientists. The second goal is to describe the object classes of these subdualities in terms familiar to algebraists, thereby making a large body of literature about them more accessible.

  • Referencias bibliográficas
    • Abramsky, S.. (1991). Domain theory in logical form. Annals of Pure and Applied Logic. 51. 1-77
    • Abramsky, S., Jung, A.. (1994). Handbook of Logic in Computer Science. Oxford University Press. 1-168
    • Balbes, R.. (1971). On the partially ordered set of prime ideals of a distributive lattice. Can. J. Math.. 23. 866-874
    • Crawley, P., Dilworth, R.P.. (1973). Algebraic Theory of Lattices. Prentice-Hall. Englewood Cliffs^eNew Jersey New Jersey.
    • Davey, B.A.. (1973). A note on representable posets. Algebra Universalis. 3. 345-347
    • Davey, B.A., Priestley, H.A.. (1990). Introduction to Lattices and Order. Cambridge University Press. Cambridge.
    • Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.. (1980). A Compendium of Continuous Lattices. Springer-Verlag....
    • Grätzer, G.. (1978). General Lattice Theory. Academic Press. New York.
    • Gunter, C.. (1985). Profinite solutions for recursive domain equations. Carnegie-Melon Univ..
    • Gunter, C.. (1985). Universal profinite domains. Inform. and Comput.. 72. 1-30
    • Johnstone, P.T.. (1982). Stone Spaces. Cambridge University Press. Cambridge.
    • Lawson, J.D.. (1979). The duality of continuous posets. Houston J. Math.. 5. 357-386
    • McKenzie, R., McNulty, G., Taylor, W.. (1987). Algebras, Lattices, Varieties. Wadsworth and Brooks/Cole. Monterey^eCalifornia California.
    • MacLane, S.. (1971). Categories for the Working Mathematician. Springer-Verlag. Berlin.
    • Mislove, M.W.. (1991). Topology and Category Theory in Computer Science. Oxford University Press. 75-111
    • Mislove, M.W., Oles, F.J.. (1991). A topological algebra for angelic nondeterminism. IBM Res. Div..
    • Plotkin, G.D.. (1976). A Powerdomain construction. SIAM J. Computing. 5. 452-488
    • Plotkin, G.D.. (1981). Post-graduate Lecture Notes in Advanced Domain Theory. J. of Computing Science, Univ. of Edinburgh.
    • Robinson, E.. (1987). Category Theory. Springer-Verlag. 238-253
    • Scott, D.S.. (1970). Outline of a mathematical theory of computation. Proceedings of the 4th Annual Princeton Conference on Information Sciences...
    • Scott, D.S.. (1971). Symposium on Semantics of Algorithmic Languages. Springer-Verlag. 311-366
    • Scott, D.S.. (1972). Toposes, algebraic geometry and logic. Springer-Verlag. 97-136
    • Scott, D.S.. (1972). Formal Semantics of Programming Languages. Prentice-Hall. 65-106
    • Scott, D.S.. (1976). Data Types as lattices. SIAM J. Computing. 5. 522-587
    • Scott, D.S., Strachey, C.. (1971). Towards a Mathematical Semantics of Computer Languages. Programming Research Group, University of Oxford....
    • Smyth, M.. (1977). The largest cartesian-closed category of domains. Theoret. Comput. Sci.. 5. 257-274
    • Speed, T.P.. (1972). On the order of prime ideals. Algebra Universalis. 2. 85-87
    • Vickers, S.. (1989). Topology via Logic. Cambridge University Press. Cambridge.
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno