Ir al contenido

Documat


The -homology of representations

  • Autores: Tim Bratten
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 49, Nº. 1, 2008, págs. 123-135
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The 𝔫 -homology groups of a 𝔤 -module provide a natural and fruitful extension of the concept of highest weight to the representation theory of a noncompact reductive Lie group. In this article we give an introduction to the 𝔫 -homology groups and a survey of some developments, with a particular emphasis on results pertaining to the problem of caculating 𝔫 -homology groups.

  • Referencias bibliográficas
    • Beilinson, A., Bernstein, J.. (1983). A generalization of Casselman's submodule theorem. Birkhäuser. Boston. 35-52
    • Bratten, T.. (1998). A comparison theorem for Lie algebra homology groups. Pacific J. Math.. 182. 23-36
    • Bratten, T, Corti, S.. (2008). A simple proof of the algebraic version of a conjecture by Vogan. J. of Lie Theory. 18. 83-91
    • Bunke, U., Olbrich, M.. (1997). Cohomological properties of the canonical globalizations of Harish-Chandra modules. Ann. of Global Analysis...
    • Casselman, W.. (1989). Canonical extensions of Harish-Chandra modules to representations of G. Can. J. Math.. 41. 385-438
    • Hecht, H, Taylor, J.. (1998). Geometry and Representation Theory of p-Adic Groups. Birhäuser.
    • Hecht, H, Taylor, J.. (1990). Analytic localization of group representations. Advances in Math.. 79. 139-212
    • Hecht, H., Taylor, J.. (1993). A comparison theorem for -homology. Compositio Math.. 86. 187-207
    • Hecht, H., Schmid, W.. (1983). Characters, asymptotics and -homology of Harish-Chandra modules. Acta Math.. 151. 49-151
    • Knapp, A, Vogan, D.. (1995). Cohomological Induction and Unitary Representations. Princeton University Press. Princeton.
    • Matsuki, T.. (1979). The orbits of affine symetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan.. 31. 331-357
    • Matsuki, T.. (1982). Orbits on affine symetric spaces under the action of parabolic subgroups. Hiroshima Math. J.. 12. 307-320
    • Milicic, D.. (1994). Localization and Representation Theory of Reductive Lie Groups.
    • Schmid, W.. (1985). Boundary value problems for group invariant differential equations. The mathematical heritage of Elie Cartan. 311-321
    • Vogan, D.. Unitary representations and complex analysis.
    • Warner, G.. (1972). Harmonic Analysis on Semi-Simple Lie Groups. Springer-Verlag.
Los metadatos del artículo han sido obtenidos de SciELO Argentina

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno