Ir al contenido

Documat


Likelihood-based inference for the power regression model

  • Guillermo Martínez-Flórez [3] ; Heleno Bolfarine [1] ; Héctor W. Gómez [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidad de Antofagasta

      Universidad de Antofagasta

      Antofagasta, Chile

    3. [3] Universidad de Córdoba
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 39, Nº. 2, 2015, págs. 187-208
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we investigate an extension of the power-normal model, called the alpha-power model and specialize it to linear and nonlinear regression models, with and without correlated errors. Maximum likelihood estimation is considered with explicit derivation of the observed and expected Fisher information matrices. Applications are considered for the Australian athletes data set and also to a data set studied in Xie et al. (2009). The main conclusion is that the proposed model can be a viable alternative in situations were the normal distribution is not the most adequate model.

  • Referencias bibliográficas
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
    • Azme, K., Ismail, Z., Haron, K. and Ahmad, T.M. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematical...
    • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.
    • Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199–208.
    • Azzalini, A. (2013). Skew Normal and Related Families. Cambridge University Press.
    • Berkane, M., Kano, Y. and Bentle, P. M. (1994). Pseudo maximum likelihood estimation in elliptical theory: effects of misspecification. Computational...
    • Cancho, V. G., Lachos, V. H. and Ortega, E. M. (2008). A nonlinear regression model with skew-normal errors. Statistical Papers, 51, 547–558.
    • Castillo, E. and Hadi, A. S. (1995). A method for estimating parameters and quantiles of distributions of continuous random variables. Computational...
    • Chiogna, M. (2005). Notes on estimation problems with scalar skew-normal distributions. Statistical Methods and Applications, 14, 331–341.
    • Cordeiro, G. M., Ferrari, S. L. P., Uribe-Opazo, M. A. and Vasconcellos, K. L. P. (2000). Corrected maximum likelihood estimation in a class...
    • Cox, D. R. and Hinkley, D. V. (1974). Theoretical statistics. Chapman and Hall, London.
    • DiCiccio, T. J. and Monti, A. C. (2004). Inferential aspects of the skew exponential power distribution. Journal of the American Statistical...
    • Durrans, S. R. (1992). Distributions of fractional order statistics in hydrology. Water Resources Research, 28, 1649–1655.
    • Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and Methods,...
    • Fernández, C. and Steel, M. (1999). Multivariate Student-t regression models: pitfalls and inference. Biometrika, 86, 153–167.
    • Foong, F. S. (1999). Impact of mixture on potential evapotranspiration, growth and yield of palm oil. Pro 1999, PORIM International Palm Oil...
    • Galea, M., Paula, G. A. and Cysneiros, J. A. (2005). On diagnostic in symmetrical nonlinear models. Statistics & Probability Letters,...
    • Gómez, H. W., Venegas, O. and Bolfarine, H. (2007). Skew-symmetric distributions generated by the distribution function of the normal distribution....
    • Gupta, A. K. and Nadarajah, S. (2004). On the moments of the beta normal distribution. Communications in Statistics-Theory and Methods, 33,...
    • Gupta, D. and Gupta, R. C. (2008). Analyzing skewed data by power normal model. Test, 17, 197–210.
    • Hutson, A. D. (2004). Utilizing the flexibility of the epsilon-skew-normal distribution for common regression problems. Journal of Applied...
    • Lange, K. L., Little, J. A. and Taylor, M. G. J. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical...
    • Lehmann, E. L. (1953). The power of rank tests. Annals of Mathematical Statistics, 24, 23–43.
    • Leiva, V., Riquelme, M., Balakrishnan, N. and Sanhueza, A. (2008). Lifetime analysis based on the generalized Birnbaum-Saunders distribution....
    • Mudholkar, G. S. and Hutson, A. D. (2000). The epsilon-skew-normal distribution for analyzing nearnormal data. Journal of Statistical Planning...
    • Pewsey, A. (2000). Problems of inference for Azzalini’s skew-normal distribution. Journal of Applied Statistics, 27, 859–870.
    • Pewsey, A., Gómez, H. W. and Bolfarine, H. (2012). Likelihood-based inference for power distributions. Test, 21, 775–789.
    • R Development Core Team (2014). A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria....
    • Razzaghi, M. (2009). Beta-normal distribution in dose-response modeling and risk assessment for quantitative responses. Enviromental and Ecological...
    • Ratkowsky, D. A. (1983). Nonlinear Regression Models. Marcel Dekker, New York.
    • Rego, L. C., Cintra, R. J. and Cordeiro, G. M. (2012). On some properties of the beta normal distribution. Communications in Statistics-Theory...
    • Taylor, J. and Verbyla, A. (2004). Joint modeling of location and scale parameters of t distribution. Statistical Modelling, 4, 91–112.
    • Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.
    • Xie, F. C., Lin, J. G. and Wei, B.C. (2009). Diagnostics for skew nonlinear regression models with AR(1) errors. Computational Statistics...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno