Ir al contenido

Documat


An alternative to classical latent class models selection methods for sparse binary data: An illustration with simulated data

  • Autores: Carlomagno Araya Alpízar
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 23, Nº. 1, 2016, págs. 199-220
  • Idioma: inglés
  • DOI: 10.15517/rmta.v23i1.22448
  • Títulos paralelos:
    • Un método alternativo para la selección de modelos de clases latentes en datos binarios escasos: Una ilustración con datos simulados
  • Enlaces
  • Resumen
    • español

      En el contexto de modelos de clases latentes con variables manifiestas binarias, se propone un método alternativo para resolver el problema de la estimación de la distribución empírica con tablas de contingencias escasas, donde la aproximación de los estadísticos de bondad de ajuste por la distribución Chi-Cuadrada no es válida. Se analiza datos binarios escasos, donde muchos patrones de respuesta que tienen frecuencias esperadas pequeñas, en conjuntos de datos con grados de datos escasos de 1 a 5, donde d = n/2p = n/R es un factor es mencionado en la literatura como determinante de la bondad de ajuste a la distribución Chi-Cuadrada. La propuesta presenta resultados válidos y confiables en las condiciones de los datos mencionadas. Para los resultados se presenta tasas de error tipo I para las pruebas tradiciones de bondad de ajuste. También se muestra que para niveles de densidad de datos d ≤ 5, el estadístico Pearson

    • English

      Within the context of a latent class model with manifest binary variables, we propose an alternative method that solves the problem of estimating empirical distribution with sparse contingency tables and the chi-square approximation for goodness-of-fit will not be valid. We analyze sparse binary data, where there are many response patterns with very small expected frequencies in several data sets varying in degree of sparseness from 1 to 5 defined d = n/2p = n/R is a factor that is mentioned in almost all prior literature as being an important determinant of how well the distribution is represented by the chi-squared.The proposed approach produced results that were valid and reliable under the mentioned problematic data conditions. Results from the proposal presented compare the rates of Type I for traditional goodness-of-fit tests. We also show that with data density d ≤ 5, Pearson’s statistic

  • Referencias bibliográficas
    • Agresti, A. (2007) An Introduction to Categorical Data Analysis, 2nd Edition. Wiley Interscience, Hoboken NJ.
    • Agresti, A.; Yang, M.C. (1987) “An empirical investigation of some effects of sparseness in contingency tables”, Computational Statistics...
    • Bartholomew, D.J.; Knott, M.; Moustaki, I. (2011) Latent Variable Models and Factor Analysis: A Unified Approach. John Wiley & Sons, Chichester...
    • Bartholomew, D.J.; Leung, S.O. (2002) “A goodness of fit test for sparse 2p contingency tables”, British Journal of Mathematical and Statistical...
    • Bartholomew, D.J.; Tzamourani, P. (1999) “The goodness of fit of latent trait models in attitude measurement”, Sociological Methods &...
    • Cochran, W.G. (1952) “The χ2 test of goodness of fit”, The Annals of Mathematical Statistics 23(3): 315–345.
    • Cochran, W.G. (1954) “Some methods for strengthening the common χ2 tests”, Biometrics 10(4): 417–451.
    • Collins, L.M.; Fidler, P.L.; Wugalter, S.E.; Long, J.D. (1993) “Goodness-of-fit testing for latent class models”, Multivariate Behavioral...
    • Cramér, H. (1946) Mathematical Methods of Statistics. Princeton University Press, New York.
    • Davison, A.C.; Fraser, D. ; Reid, N.; Sartori, N. (2013) “Accurate directional inference for vector parameters in linear exponential families”,...
    • Dayton, C.M. (1998) Latent Class Scaling Analysis. Sage Publications, Thousand Oaks CA.
    • Dias, J.G.; Vermunt, J.K. (2006) “Bootstrap methods for measuring classification uncertainty in latent class analysis”, in: Compstat 2006-Proceedings...
    • Fisher, R.A. (1941) Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.
    • Gong, H. (2012) Modeling and Measuring Association for Ordinal Data. M.Sc. dissertation, Faculty of Graduate Studies and Research, University...
    • Kendall, M.G. (1952) The Advanced Theory of Statistics. Vol. 1: Distribution Theory, 5th edition. Griffin, London.
    • Kojadinovic, I.; Yan, J. (2012) “Goodness-of-fit testing based on a weighted bootstrap: A fast large-sample alternative to the parametric...
    • Kraus, K. (2012) On the Measurement of Model Fit for Sparse Categorical Data. Doctoral dissertation, Disciplinary Domain of Humanities and...
    • Kunihama, T.; Dunson, D.B. (2013) “Bayesian modeling of temporal dependence in large sparse contingency tables”, Journal of the American Statistical...
    • Lancaster, H.O.; Seneta, E. (1969) “Chi-square distribution”, in: Encyclopedia of Biostatistics. John Wiley & Sons, Ltd. Florida.
    • Langeheine, R.; Pannekoek, J.; Van de Pol, F. (1996) “Bootstrapping goodness-of-fit measures in categorical data analysis”, Sociological Methods...
    • Larntz, K. (1978) “Small-sample comparisons of exact levels for chisquared goodness-of-fit statistics”, Journal of the American Statistical...
    • Lazarsfeld, P.F.; Henry, N.W. (1968) Latent Structure Analysis. Houghton Mifflin, Boston.
    • Mielke P.W.; Berry, K.J. (2002) “Categorical independence tests for large sparse r-way contingency tables”, Perceptual and Motor Skills 95(2):...
    • Milovanovic, J. (2011) Chi-Square Orthogonal Components for Assessing Goodness-of-fit of Multidimensional Multinomial Data. Doctoral dissertation,...
    • Nylund, K.L.; Asparouhov, T.; Muthén, B.O. (2007) “Deciding on the number of classes in latent class analysis and growth mixture modeling:...
    • Papoulis, A.; Pillai, S.U. (2002) Probability, Random Variables, and Stochastic Processes. McGraw-Hill Education.
    • Radavičius, M.; Samusenko, P. (2011) “Profile statistics for sparse contingency tables under Poisson sampling”, Austrian Journal of Statistics...
    • Radavičius, M.; Samusenko, P. (2012) “Goodness-of-fit tests for sparse nominal data based on grouping”, Nonlinear Analysis: Modeling and...
    • Reiser, M.; Lin, Y. (1999) “A goodness-of-fit test for the latent class model when expected frequencies are small”, Sociological methodology...
    • Samusenko, P. (2012) Nonparametric Criteria for Sparse Contingency Tables. Doctoral dissertation, Vilnius Gediminas Technical Univerty, Lithuania.
    • Tate, M.W.; Hyer, L.A. (1973) “Inaccuracy of the χ2 test of goodness of fit when expected frequencies are small”, Journal of the American...
    • Tollenaar, N.; Mooijaart, A. (2003) “Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information”,...
    • Van Der Heijden, P.; Hart, H.; Dessens, J. (1997) “A parametric bootstrap procedure to perform statistical tests in a LCA of anti-social behaviour”,...
    • Von Davier, M. (1997) “Bootstrapping goodness-of-fit statistics for sparse categorical data-results of a Monte Carlo study”, Methods of Psychological...
    • Van Kollenburg, G.; Mulder, J.; Vermunt, K. (2015) “Assessing model fit in latent class analysis when asymptotics do not hold methodology”,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno