Ir al contenido

Documat


Ordering catacondensed hexagonal systems with respect to VDB topological indices

  • Autores: Juan Rada
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 23, Nº. 1, 2016, págs. 277-289
  • Idioma: inglés
  • DOI: 10.15517/rmta.v23i1.22554
  • Títulos paralelos:
    • Ordenación de los sistemas hexagonales catacondensados con respecto a los índices topológicos VDB
  • Enlaces
  • Resumen
    • español

      En este artículo presentamos una descripción completa de la relación de orden en el conjunto de sistemas hexagonales catacondensados, con respecto a un índice topológico basado en los grados de los vértices. Como consecuencia, se determinan los valores extremos de un índice topológico basados en los grados de los vértices en subconjuntos especiales del conjunto de sistemas hexagonales catacondensados.

    • English

      In this paper we give a complete description of the ordering relations in the set of catacondensed hexagonal systems, with respect to a vertex-degree-based topological index. As a consequence, extremal values of vertex-degree-based topological indices in special subsets of the set of catacondensed hexagonal systems are computed.

  • Referencias bibliográficas
    • Berrocal, L.; Olivieri, A.; Rada, J. (2014) “Extremal values of vertex-degree-based topological indices over hexagonal systems with fixed...
    • Cruz, R.; Giraldo, H.; Rada, J. (2013) “Extremal values of vertex-degree topological indices over hexagonal systems”, MATCH Commun. Math....
    • Devillers, J; Balaban, A.T., Eds. (1999) Topological Indices and Related Descriptors in QSAR and QSPR. Gordon & Breach, Amsterdam.
    • Estrada E.; Torres L.; Rodríguez L.; Gutman, I. (1998) “An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes”,...
    • Furtula B.; Graovac A.; Vukičević D. (2010) “Augmented Zagreb index”, J. Math. Chem. 48(2): 370–380.
    • Furtula B.; Gutman, I.; Dehmer M. (2013) “On structure-sensitivity of degree-based topological indices” , Appl. Math. Comput. 219: 8973–8978.
    • Gutman, I.; Trinajstić, N. (1972) “Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons”, Chem. Phys. Lett....
    • Gutman, I. (1985) “Topological properties of benzenoid systems. XLI. Carbon-carbon bond types and connectivity indices of benzenoid hydro-carbons”,...
    • Gutman, I.; Cyvin, S.J. (1989) Introduction to the Theory of Benzenoid Hydrocarbons. Springer-Verlag, Berlin.
    • Gutman, I. (2013) “Degree-based topological indices”, Croat. Chem. Acta 86(4): 351–361.
    • Gutman, I.; Tos̆ović, J. (2013) “Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices” , J. Serb....
    • Kier, L.B.; Hall, L.H. (1976) Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York.
    • Kier, L.B.; Hall, L.H. (1986) Molecular Connectivity in Structure-Activity Analysis. Wiley, New York.
    • Li, X.; Shi, Y. (2008) “A survey on the Randić index”, MATCH Commun. Math. Comput. Chem. 59: 127–156.
    • Li, X.; Shi, Y.; Wang, L. (2008) “An updated survey on the Randić index”, in: I. Gutman & B. Furtula (Eds.) Recent Results in the Theory...
    • Rada, J. (2002) “Bounds for the Randić index of catacondensed systems”, Util. Math. 62: 155–162.
    • Rada, J.; Cruz, R.; Gutman, I. (2013) “Vertex-degree-based topological indices of catacondensed hexagonal systems”, Chem. Phys. Lett. 572:...
    • Rada, J.; Cruz, R. (2014) “Vertex-degree-based topological indices over graphs”, MATCH Commun. Math. Comput. Chem. 72(3): 603–616.
    • Rada, J.; Cruz, R.; Gutman, I. (2014) “Benzenoid systems with extremal vertex-degree-based topological indices”, MATCH Commun. Math. Comput....
    • Randić, M. (1975) “Characterization of molecular branching”, J. Am. Chem. Soc. 97(23): 6609–6615.
    • Todeschini, R.; Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley-VCH, Weinheim.
    • Vukičević, D.; Furtula, B. (2009) “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of...
    • Zhong, L. (2012) “The harmonic index for graphs”, Appl. Math. Lett. 25(3): 561–566.
    • Zhou, B.; Trinajstić, N. (2009) “On a novel connectivity index”, J. Math. Chem. 46(4): 1252–1270.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno