Ir al contenido

Documat


Stability study of eighth-order iterative methods for solving nonlinear equations

  • Alicia Cordero [1] ; Alberto Magreñán [2] ; Carlos Quemada [3] ; Juan R. Torregrosa [1]
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

    2. [2] Universidad Internacional de La Rioja

      Universidad Internacional de La Rioja

      Logroño, España

    3. [3] Virginia University, USA
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 291, Nº 1 (1 January 2016), 2016, págs. 348-357
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2015.01.006
  • Enlaces
  • Resumen
    • In this paper, we study the stability of the rational function associated to a known family of eighth-order iterative schemes on quadratic polynomials. The asymptotic behavior of the fixed points corresponding to the rational function is analyzed and the parameter space is shown, in which we find choices of the parameter for which there exists convergence to cycles or even chaotical behavior showing the complexity of the family. Moreover, some elements of the family with good stability properties are obtained.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno