Ir al contenido

Documat


The majorant method in the theory of Newton–Kantorovich approximations and generalized Lipschitz conditions

  • Ioannis K. Argyros [1] ; Saïd Hilout [2]
    1. [1] Cameron University

      Cameron University

      Estados Unidos

    2. [2] Poitiers University, France
  • Localización: Journal of computational and applied mathematics, ISSN 0377-0427, Vol. 291, Nº 1 (1 January 2016), 2016, págs. 332-347
  • Idioma: inglés
  • DOI: 10.1016/j.cam.2014.12.013
  • Enlaces
  • Resumen
    • We provide a semilocal as well as a local convergence analysis for Newton’s and modified Newton’s methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. We use more precise majorizing sequences than in earlier studies such as Appell et al. (1997), Appell et al. (1991), Argyros (2004), Argyros and Hilout (2009), Kantorovich and Akilov (1982), Ortega and Rheinboldt (1970) and generalized Lipschitz continuity conditions. Our sufficient convergence conditions are weaker than before and our convergence analysis is tighter. Special cases and numerical examples are also given in this study.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno